Ранговая формула

Постановка проблемы. Мы постоянно имеем дело с поликомпонентными объектами: продуктами питания, лекарствами, мусором,  сплавами металлов, пластиком, реактивами, биоценозами – совокупностями организмов, – мы сами весьма богатые видами вирусов, бактерий, грибов биоценозы. Специалисты разных областей знаний имеют дело с  такими же сложными объектами– совокупностями национальностей в странах, распределениями возрастов населения, атомов в кристаллах, в горных породах, водах, рудах, с распределениями высот деревьев, площадей квартир в городе, уловов рыбы, денег по банкам и преступлений по городам и национальностям, а также разного другого. Эти объекты,  в первую очередь, различаются по их составам. Составы объектов представляются перечнями названий (или аббревиатур) компонентов, сопровождающимися их количественными характеристиками в процентах или долях единицы.

Существует два типа задач. Первый – найти состав  объекта по его названию. Этот тип вопросов обеспечен широчайшими возможностями – интернетом, справочниками, энциклопедиями. В этом случае, для входа в поисковую систему,  используются алфавиты национальных языков. Второй тип – найти название объекта по его составу. В этих случаях ситуация резко осложняется. Требуется большой, длительно приобретаемый в вузах  опыт по использованию, например, в геологии,  химических и минеральных  классификаций, чтобы по составу объекта определить его название. Эта проблема из-за непрерывности в вариациях горных пород и многих минералов господствует,– определение горной породы, даже при высокой квалификации исследователей, часто бывает далеко от однозначности, как показывали специальные исследования.

Для решения этих задач и был придуман универсальный – для работы с составами объектов любой природы, – язык-метод RHA (ранговая формула, энтропия, анэнтропия), и потребовалось обратиться к лингвистике, и превратить составы в слова, которые потом можно было бы упорядочивать как термины в специализированных справочниках.

Займёмся решением 

Ранжирование в природе, социуме – вечный и повсеместный процесс определения,  доказательства, показательства, демонстрации,  кто больше, находчивее, сильнее, быстрее, богаче, умнее. Ранжирование – отражение процесса всеобщей конкуренции – борьбы за лимит ресурсов: воду-пищу-территорию-деньги-известность-место в иерархии-…; установление относительных количеств, интенсивностей, мощностей, скоростей, высот, сил, масс, возрастов, атомов на поверхности кристаллов, вирусов в организме, или производств средств  уничтожения бактерий, вирусов, городов, людей, мусора- и т.д..

При знакомстве с чем-то или с кем-то мы стремимся сначала выяснить главное ((женат?…)), а затем, осознавая, или не очень, начинаем знакомиться с менее значимыми для нас особенностями объекта внимания (а дети?), постепенно вникая во всё более тонкие его особенности. Так что решая научную задачу описания, сжимая состав, -кодируя его, мы поступаем как это принято в цивилизованном социуме, то есть не останавливаясь на первом и единственном впечатлении – друг,  или в бой…

Сравнение производится по измеримым свойствам характеристикам:  вероятностям, длинам, интенсивностям, массам, напряженностям, размерам, скоростям, частотам, штукам и баллам, когда прямое измерение невозможно, и оценку производит эксперт  т.п.

СОСТАВ – пара строк или колонок “компонент-доля” или “свойство-интенсивность”, выраженные в процентах или долях единицы от суммы компонентов или  интенсивностей свойств. Доли компонентов и интенсивности свойств, в контексте темы, могут быть объединены в термине “значимость“.

Ранговая формула (R) ‒ полуколичественное дискретное представление составов, в котором зафиксирован номер места – ранг компонентов в иерархии их значимости  в составе.

Symbol1  SymbolSymbol3…  …Symboln…   …SymbolN

Рис. первая строка – общее представление ранговой формулы как последовательности символов с возрастающими номерами рангов, здесь n – длина стандартизированной ранговой формулы (об этом дальше, – при рассмотрении количественных характеристик Н, А, Т)  , N– длина полной R  : вторая – невозрастающая последовательность значимостей компонентов состава; третья – реальная ранговая формула состава максимально часто встречающегося гранита.

“Полуколичественное” означает, что мы пользуемся только результатом сравнения величин значимости компонентов-свойств в виде ряда  их обозначающих   символов,  но построив ряд, отказываемся от самих величин, заметим – временно. “Дискретное” ‒ потому, что дискретны – не перекрываются, чётко различаются компоненты и их обозначения (атомы, молекулы, виды животных, растений…).  В случае представления свойств, различающихся только количественно и при непрерывности этих количеств (возраста, площади, высоты, массы, зарплаты  и т.п.), производится дискретизация, то есть разбиение интервала изменчивости на части – шкалирование. Разбиение количественных шкал на части может быть равномерным (например, шкала возрастов), логарифмическим (размеров зёрен в породе), степенным (доходов всех жителей страны).

Итак, ранговая формула R это  последовательность символов (имён, аббревиатур)  компонентов, соответствующая невозрастающей последовательности их абсолютных количеств Xi , или  долей единицы (Sumpi =1), или процентов.

p1p2p3… …≥pn≥…   …pN

Например, в области “всеобщей” химии будут находиться  ранговые формулы химических соединений и их смесей:  HHeOCNMg ‒ Солнце, HCNO ‒ гистидин и креатин (группа аминокислот),  HO ‒  молекула воды, HONCCa… вода Байкала, HOCNCa… ‒ тело человека, OMgSiCFe… ‒ метеорит-ахондрит, OSiAlNaH… ‒ натровый гранит.  Многоточие означает, что дальше ,   по мере увеличения длины ранговых формул ‒ повышения детальности анализов составов (n),  а также  включения в действие других функций метода H (=E),  A, T  в разнообразии последующих элементов в R и различиях цифровых значений  HAT будут проявляться всё более тонкие различия в группах составов, имеющих одинаковые начала ранговых формул.

При строгом  равенстве долей соседних компонентов между символами в идеальных составах  идеальных объектов ‒ ставится знак равенства, а символы располагаются по алфавиту , по которому упорядочиваются символы. При близости значений соседних содержаний, согласно условию  pi / pi+1 ≤1.15 (или ином приемлемом числе), между компонентами также ставится знак равенства, но порядок расположения не изменяется.

Поскольку при наличии информации о соотношениях между долями или количествами компонентов типа больше-меньше, в том числе полученных и экспертно,  всегда возможно их упорядочение компонентов, постольку:

не существует количественных составов, для которого получить ранговую формулу невозможно.

Поэтому:

ранговая формула является универсальным средством качественно-количественного описания-представления составов объектов любой природы.

Ранговая формула это имя  площади сектора, вырезаемого медианами или медианными плоскостями в правильном треугольнике –  симплексе[1].  В  нём медианы вырезают 6 секторов, в более сложном случае – тетраэдре – 24.  При возрастании размерности симплекса количество секторов Х рассчитывается по формуле числа перестановок из N разных символов, то есть  Х=N!  (Х-факториал). Знаки равенства в ранговой формуле свидетельствуют о близости состава к границе между секторами или, при точном равенстве, – о нахождении состава на границе.

Поскольку ранговая формула может рассматриваться как слово, в котором роль букв выполняют обозначения компонентов, ранговые формулы  могут упорядочиваться по компонентному алфавиту, который приемлем для используемых анализов составов. Алфавитные упорядочения собраний ранговых формул порождают Иерархические Системы Составов, (для «смесей» ‒   Иерархические Периодические….). Предпочтительны интенсиональные алфавиты, то есть те, в которых существуют осмысленные связи между соседними буквами (символами), например, как в  Периодической Системе Элементов: H He Li Be B С …, ‒ для химических составов, или последовательность чисел: 5 10 15 20 25…, ‒ для возрастных распределений.

Ранговая формула R – играет ключевую, центральную, роль, – роль корня слова языка RHAT. Последующие знаки H,A, T, качественно, могут соответствовать  уточняющим смысл всего слова – суффиксам и окончанию.

Ранговая формула классификаторрейтинг  знаков компонентов  состава по их содержаниям.  Их упорядоченность  позволяет объективно  оценивать  детальность полного состава, как количество символов в полной ранговой формуле (N), и назначать стандартную детальность (n – меньшую или равную полной). Выбор и назначение стандартной детальности необходимо для работы с составами реальных объектов, в которых, либо отсутствуют, любо  не чётко различаются обязательные для учёта структурные (ядерные) компоненты и второстепенные, примесные, случайные – как в горных породах, сложных минералах, продуктах питания, строительных материалах. Стандартизация длин ранговых формул и соответствующих им содержаний обеспечивает сравнимость результатов расчётов других интегральных характеризаций составов.

Ранговая формула –в геометрической интерпретации, в отличие от рассмотренной алгебраической, это имя сектора в правильном треугольнике или тетраэдре, которые разбиваются на сектора медианами, или медианными  плоскостями.  В первом случае их будет 6 , во втором – 24. Правильные треугольники широко используются в геологии, но при этом от медиан отбрасываются части исходящие от вершин, что вдвое сокращает детальность получаемой информации  о положении точки в треугольнике.

Ранговая формула ‒ первый член кода RHAT. Ранговые формулы постоянно используются как необходимая составная часть кода RHAT при упорядочении их совокупностей, а также при стандартизации детальности описания составов для сопоставимости анализов разной длины.

Таким образом:

ранговая формула является универсальным лингвистическим содержательным полуколичественным представлением состава как  распределения величин произвольной природы.

Термин ранговая формула, обозначающий упорядоченный по невозрастанию перечень компонентов системы, введён в первой статье о  языке-методе RHAT:

Петров Т.Г. Обоснование варианта общей классификации  геохимических систем. // Вестник ЛГУ.- N18.- 1971. С.30-38

https://www.researchgate.net/publication/263338324_Obosnovanie_varianta_obsej_klassifikacii_geohimiceskih_sistem_Rationale_for_a_variant_of_the_general_classification_of_geochemical_systems

Термин Интенсиональный алфавит введён в статье:

Чебанов С.В. Петров Т.Г. Интенсиональность, интенсиональные алфавиты, интенсиональные слова и словари. В сб. Актуальные проблемы современной когнитивной науки. Иваново. 2013 С.239-266.

DOI: 10.13140/RG.2.1.4542.8644 RG

 

[1] Симплекс –  n-мерный тетраэдр (от лат. simplex ‘простой’) — геометрическая фигура, являющаяся n-мерным обобщением треугольника (Википедия)

Вернуться на “Картинки И”